

Deltas are great exploration targets on Mars as are good at preserving biosignatures

Figure 2: The main lobe [A] of the Hypanis system and its remnant lobe [B] and channels [C, D]. New potential deposit of the Hypanis delta is marked in a yellow box.

Characterizing A Potential Remnant of the Hypanis Delta Christina Singh (csingh1@conncoll.edu)¹, Jacob Adler², Frances Rivera-Hernández² ¹Connecticut College, Department of Physics, Astronomy, and Geophysics, ²Georgia Institute of Technology, School of Earth & Atmospheric Sciences

(THEMIS) (d), and elevation (DEM) (f). 3D DEM view and overhead view (e) of datasets used to determine the extent of the distal sediment deposit and to locate layers in the deposit.

Preliminary Interpretations

Three possibilities:

- 1. Sedimentary deposit not linked to Hypanis
- 2. Part of main delta lobe (Length: 100 km, Area: 3,000 km²)
- 3. Or... Another delta lobe of Hypanis system²

Future Work

- Re-analyze sequence of events that formed the Hypanis system
- Better constrain size of paleo-sea/ocean
- Quantify errors for layer dips

Figure 5: Best-fit planes for each layer of sediment identified in our study.

Preliminary Results: Orientations of Delta Layers

Layer	Dip Angle°	Dip Direction [°]	Number of Points	Points_L1 L1
1	10.76	95.37	11	Points_L2 12
2	2.42	-42.03	9	Points_L3
3	2.71	-48.18	12	Points_L4
4	1.83	-23.40	13	 L4 Points_L5
5	2.71	-41.55	9	 L5 Points_L6
6	2.25	63.86	15	L6Points_L7
7	2.91	-33.48	6	 L7 Points_L8
8	1.35	13.04	6	 L8 Points_L9
9	12.41	121.04	6	L9 Points L10
10	3.85	-39.60	10	L10 Points 111
11	1.75	21.59	8	- L11
12	0.46	3.12	7	L12
13	1.86	6480	7	 Points_L13 L13
14	2.96	101.24	9	Points_L14 L14
15	2.58	-40.42	13	Points_L15 L15
16	13.64	96.42	8	Points_L16 L16
Figure 6: Table with dip angles and dip directions of various sediment layers.				

References 1.) Jacob B. Adler, James F. Bell III, Peter Fawdon, Joel Davis, Nicholas H. Warner, Elliot Sefton-Nash, Tanya N. Harrison, Hypotheses for the origin of the Hypanis fan-shaped deposit at the edge of the Chryse escarpment, Mars: Is it a delta?, Icarus, Volume 319, 2019, Pages 885-908, ISSN 0019-1035, https://doi.org/10.1016/j.icarus.2018.05.021 2.) Peter Fawdon, Sanjeev Gupta, Joel M. Davis, Nicholas H. Warner, Jacob B. Adler, Matthew R. Balme, James F. Bell, Peter M. Grindrod, Elliot Sefton-Nash, The Hypanis Valles delta: The last highstand of a sea on early Mars?, Earth and Planetary Science Letters, Volume 500, 2018, Pages 225-241, ISSN 0012-821X, https://doi.org/10.1016/j.epsl.2018.07.040

= Points on layer